30 Авг 2019 в 08:41
160 +1
0
Ответы
1

To solve this equation, we can first factor out a common factor of 9 from all the terms:

9x4−2x3−2x2−2x+1x^4 - 2x^3 - 2x^2 - 2x + 1x42x32x22x+1 = 0

Now, we can look for factors of 1 theconstanttermthe constant termtheconstantterm that add up to -2 thecoefficientofthex3termthe coefficient of the x^3 termthecoefficientofthex3term. The factors that satisfy this condition are -1 and -1:

9x4−x3−x2+x−x+1x^4 - x^3 - x^2 + x - x + 1x4x3x2+xx+1 = 0

Now, we can factor by grouping:

9x3(x−1)−x(x−1)−1(x−1)x^3(x - 1) - x(x - 1) - 1(x - 1)x3(x1)x(x1)1(x1) = 0

Factor out a common factor of x−1x - 1x1 from the terms inside the parentheses:

9(x3−x−1)(x−1)(x^3 - x - 1)(x - 1)(x3x1)(x1) = 0

The equation now becomes:

9x3−x−1x^3 - x - 1x3x1x−1x - 1x1 = 0

At this point, we have a product of three factors equal to zero. This means that one or more of the factors must be zero in order for the entire expression to equal zero.

Setting each factor equal to zero and solving for x gives us the solutions:

x^3 - x - 1 = 0
x - 1 = 0

Solving x - 1 = 0 for x gives us x = 1.

To solve x^3 - x - 1 = 0, we can use numerical methods such as Newton's method or use a computer algebra system to find approximate solutions.

20 Апр 2024 в 06:04
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир