To solve this inequality, we need to be careful with the domain of the square roots involved. In order for the square roots to be real numbers, the expressions under the square roots must be greater than or equal to 0.
For textextex\sqrt{-5x-4}/tex/tex/tex to be real, we must have textextex-5x-4 \geq 0/tex/tex/tex. Solving this inequality, we get: textextexx \leq -\frac{4}{5}/tex/tex/tex.
For textextex\sqrt{1-3x}/tex/tex/tex to be real, we must have textextex1-3x \geq 0/tex/tex/tex. Solving this inequality, we get: textextexx \leq \frac{1}{3}/tex/tex/tex.
Now we need to consider the cases where the inequality textextex\sqrt{-5x-4} +\sqrt{1-3x} \ \textless \ 3/tex/tex/tex holds.
Case 1: textextex-\frac{4}{5} \leq x \leq \frac{1}{3}/tex/tex/tex
In this case, both square roots are real numbers and the inequality holds true.
Case 2: textextexx \leq -\frac{4}{5} \ and \ x \leq \frac{1}{3}/tex/tex/tex
In this case, the expression under the square root in textextex\sqrt{1-3x}/tex/tex/tex becomes negative, hence the inequality does not hold true.
Thus, the solution to the inequality textextex\sqrt{-5x-4} +\sqrt{1-3x} \ \textless \ 3/tex/tex/tex is: textextex-\frac{4}{5} \leq x \leq \frac{1}{3}/tex/tex/tex.
To solve this inequality, we need to be careful with the domain of the square roots involved. In order for the square roots to be real numbers, the expressions under the square roots must be greater than or equal to 0.
For textextex\sqrt{-5x-4}/tex/tex/tex to be real, we must have textextex-5x-4 \geq 0/tex/tex/tex. Solving this inequality, we get: textextexx \leq -\frac{4}{5}/tex/tex/tex.
For textextex\sqrt{1-3x}/tex/tex/tex to be real, we must have textextex1-3x \geq 0/tex/tex/tex. Solving this inequality, we get: textextexx \leq \frac{1}{3}/tex/tex/tex.
Now we need to consider the cases where the inequality textextex\sqrt{-5x-4} +\sqrt{1-3x} \ \textless \ 3/tex/tex/tex holds.
Case 1: textextex-\frac{4}{5} \leq x \leq \frac{1}{3}/tex/tex/tex In this case, both square roots are real numbers and the inequality holds true.
Case 2: textextexx \leq -\frac{4}{5} \ and \ x \leq \frac{1}{3}/tex/tex/tex In this case, the expression under the square root in textextex\sqrt{1-3x}/tex/tex/tex becomes negative, hence the inequality does not hold true.
Thus, the solution to the inequality textextex\sqrt{-5x-4} +\sqrt{1-3x} \ \textless \ 3/tex/tex/tex is: textextex-\frac{4}{5} \leq x \leq \frac{1}{3}/tex/tex/tex.