Площадь квадрата со стороной а=4 см увеличилась на 0,8 см^2 вычисоить приближенно удлинение стороны квадрата

7 Сен 2019 в 07:42
171 +1
0
Ответы
1

Для решения этой задачи нужно найти разность между площадью увеличенного квадрата и исходного квадрата, а затем найти длину стороны квадрата, которое соответствует этому изменению площади.

Площадь квадрата со стороной (a = 4) см равна (S = a^2 = 4^2 = 16) см(^2).

Площадь увеличенного квадрата равна (16 + 0,8 = 16,8) см(^2).

Пусть (x) - длина стороны увеличенного квадрата. Тогда площадь увеличенного квадрата равна (x^2).

Теперь можно записать уравнение:

[x^2 = 16,8]

[x = \sqrt{16,8}]

[x \approx 4,1 \, \text{см}]

Таким образом, сторона увеличенного квадрата приближенно равна 4,1 см. Удлинение стороны квадрата составляет приблизительно 0,1 см.

20 Апр 2024 в 03:05
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир