First, let's simplify the expression inside the parenthesis:
4a−4a−2a2+a4 \sqrt{a} - \frac{4a - 2 \sqrt{a}}{2 + \sqrt{a}}4a −2+a 4a−2a
We can simplify the fraction by finding a common denominator:
4a−2(2a+a)2+a4 \sqrt{a} - \frac{2(2\sqrt{a} + \sqrt{a})}{2 + \sqrt{a}}4a −2+a 2(2a +a )
4a−2(3a)2+a4 \sqrt{a} - \frac{2(3\sqrt{a})}{2 + \sqrt{a}}4a −2+a 2(3a )
4a−6a2+a4 \sqrt{a} - \frac{6\sqrt{a}}{2 + \sqrt{a}}4a −2+a 6a
Now, let's simplify the entire expression:
(4a−6a2+a)÷12+a(4 \sqrt{a} - \frac{6\sqrt{a}}{2 + \sqrt{a}}) \div \frac{1}{2 + \sqrt{a}}(4a −2+a 6a )÷2+a 1
We can simplify the division by multiplying by the reciprocal of the divisor:
(4a−6a2+a)⋅(2+a)(4 \sqrt{a} - \frac{6\sqrt{a}}{2 + \sqrt{a}}) \cdot (2 + \sqrt{a})(4a −2+a 6a )⋅(2+a )
4a(2+a)−6a4 \sqrt{a}(2 + \sqrt{a} ) - 6\sqrt{a}4a (2+a )−6a
8a+4a−6a8\sqrt{a} + 4a - 6\sqrt{a}8a +4a−6a
2a+4a2\sqrt{a} + 4a2a +4a
So, the final simplified expression is 2a+4a2\sqrt{a} + 4a2a +4a.
First, let's simplify the expression inside the parenthesis:
4a−4a−2a2+a4 \sqrt{a} - \frac{4a - 2 \sqrt{a}}{2 + \sqrt{a}}4a −2+a 4a−2a
We can simplify the fraction by finding a common denominator:
4a−2(2a+a)2+a4 \sqrt{a} - \frac{2(2\sqrt{a} + \sqrt{a})}{2 + \sqrt{a}}4a −2+a 2(2a +a )
4a−2(3a)2+a4 \sqrt{a} - \frac{2(3\sqrt{a})}{2 + \sqrt{a}}4a −2+a 2(3a )
4a−6a2+a4 \sqrt{a} - \frac{6\sqrt{a}}{2 + \sqrt{a}}4a −2+a 6a
Now, let's simplify the entire expression:
(4a−6a2+a)÷12+a(4 \sqrt{a} - \frac{6\sqrt{a}}{2 + \sqrt{a}}) \div \frac{1}{2 + \sqrt{a}}(4a −2+a 6a )÷2+a 1
We can simplify the division by multiplying by the reciprocal of the divisor:
(4a−6a2+a)⋅(2+a)(4 \sqrt{a} - \frac{6\sqrt{a}}{2 + \sqrt{a}}) \cdot (2 + \sqrt{a})(4a −2+a 6a )⋅(2+a )
4a(2+a)−6a4 \sqrt{a}(2 + \sqrt{a} ) - 6\sqrt{a}4a (2+a )−6a
8a+4a−6a8\sqrt{a} + 4a - 6\sqrt{a}8a +4a−6a
2a+4a2\sqrt{a} + 4a2a +4a
So, the final simplified expression is 2a+4a2\sqrt{a} + 4a2a +4a.