7/12+1/6-?*4/5:3/10=1. 1/3 ?-3/4:2+3/8*2/3=1/3 2/5*5/6+?-3/8:1.1/4=1/2 ?+2/9:11/10-5/8*17.3/5=?

16 Сен 2019 в 19:43
171 +1
0
Ответы
1

Let's solve each equation one by one:

1) ( \frac{7}{12} + \frac{1}{6} - x \times \frac{4}{5} : \frac{3}{10} = 1)

First, simplify the division: ( \frac{4}{5} : \frac{3}{10} = \frac{4}{5} \times \frac{10}{3} = \frac{40}{15} = \frac{8}{3} )

Now substitute back into the equation:

( \frac{7}{12} + \frac{1}{6} - x \times \frac{8}{3} = 1 )

Find a common denominator for the fractions:

( \frac{7}{12} = \frac{35}{60} )

Therefore, the equation becomes:

( \frac{35}{60} + \frac{10}{60} - x \times \frac{8}{3} = 1)

Now combine the fractions:

( \frac{45}{60} - x \times \frac{8}{3} = 1)

( x \times \frac{8}{3} = \frac{15}{60} )

( x \times \frac{8}{3} = \frac{1}{4} )

Solving for x:

(x = \frac{1}{4} \div \frac{8}{3} = \frac{3}{32} )

Therefore, ( x = \frac{3}{32}).

2) ( \frac{1}{3} - \frac{3}{4} : 2 + \frac{3}{8} \times \frac{2}{3} = \frac{1}{3} )

First, solve the division:

( \frac{3}{4} : 2 = \frac{3}{4} \div 2 = \frac{3}{8} )

Substitute back into the equation:

( \frac{1}{3} - \frac{3}{8} + \frac{3}{8} \times \frac{2}{3} = \frac{1}{3} )

Simplify further:

( \frac{1}{3} - \frac{3}{8} + \frac{1}{4} = \frac{1}{3} )

Combine the fractions:

( \frac{8}{24} - \frac{9}{24} + \frac{6}{24} = \frac{8}{24} )

( x = \frac{8}{24} )

( x = \frac{1}{3} )

Therefore, x = 1/3

3) ( \frac{2}{5} \times \frac{5}{6} + x - \frac{3}{8} : 1.1 = \frac{1}{2} )

Solve the multiplication and division first:

( \frac{2}{5} \times \frac{5}{6} = \frac{2}{6} = \frac{1}{3} )

( \frac{3}{8} : 1.1 = \frac{3}{8} \div 1.1 \approx \frac{3}{8} \div 1.1 \approx \frac{27}{88} )

Substitute back into the equation:

( \frac{1}{3} + x - \frac{27}{88} = \frac{1}{2} )

Now combine the fractions:

( \frac{1}{3} + x - \frac{27}{88} = \frac{44}{88} )

Simplify further:

( x - \frac{1}{3} = \frac{27}{88} )

( x = \frac{28}{88} + \frac{27}{88} )

( x = \frac{55}{88} )

Therefore, ( x = \frac{55}{88} )

19 Апр 2024 в 23:04
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир