To solve this problem, we first need to convert all mixed numbers to improper fractions:
5 2/7 = 7<em>5+27 <em> 5 + 27<em>5+2/7 = 37/74 1/18 = 18</em>4+118 </em> 4 + 118</em>4+1/18 = 73/185 1/24 = 24∗5+124 * 5 + 124∗5+1/24 = 121/24
Now we can substitute in the values and simplify the equation:
37/7 + 3/8 - 51/56 - 121/24−73/18121/24 - 73/18121/24−73/18 = 37/7 + 3/8 - 51/56 - 121/24−73/18121/24 - 73/18121/24−73/18 = 37/7 + 3/8 - 51/56 - 121/24−73/18121/24 - 73/18121/24−73/18 = 37/7 + 3/8 - 51/56 - 121/24−73/18121/24 - 73/18121/24−73/18 = 37/7 + 3/8 - 51/56 - 121/24−(24<em>3+1)/18121/24 - (24 <em> 3 + 1)/18121/24−(24<em>3+1)/18 = 37/7 + 3/8 - 51/56 - 121/24−73/18121/24 - 73/18121/24−73/18 = 37/7 + 3/8 - 51/56 - 121/24 + 109/18= 37/7 + 3/8 - 51/56 - 121/24 + 109/18= 37</em>8+3<em>7−5137 </em> 8 + 3 <em> 7 - 5137</em>8+3<em>7−51 8/7 56 - 121 7 3 3 18= 296+21−51296 + 21 - 51296+21−51 8/7 - 121 * 7 + 3276
= 266266266 * 8/7 - 847 + 3276= 2108/7 - 847 + 3276= 301.14
Therefore, the simplified answer is 301.14.
To solve this problem, we first need to convert all mixed numbers to improper fractions:
5 2/7 = 7<em>5+27 <em> 5 + 27<em>5+2/7 = 37/7
4 1/18 = 18</em>4+118 </em> 4 + 118</em>4+1/18 = 73/18
5 1/24 = 24∗5+124 * 5 + 124∗5+1/24 = 121/24
Now we can substitute in the values and simplify the equation:
37/7 + 3/8 - 51/56 - 121/24−73/18121/24 - 73/18121/24−73/18 = 37/7 + 3/8 - 51/56 - 121/24−73/18121/24 - 73/18121/24−73/18 = 37/7 + 3/8 - 51/56 - 121/24−73/18121/24 - 73/18121/24−73/18 = 37/7 + 3/8 - 51/56 - 121/24−73/18121/24 - 73/18121/24−73/18 = 37/7 + 3/8 - 51/56 - 121/24−(24<em>3+1)/18121/24 - (24 <em> 3 + 1)/18121/24−(24<em>3+1)/18 = 37/7 + 3/8 - 51/56 - 121/24−73/18121/24 - 73/18121/24−73/18 = 37/7 + 3/8 - 51/56 - 121/24 + 109/18
= 37/7 + 3/8 - 51/56 - 121/24 + 109/18
= 37</em>8+3<em>7−5137 </em> 8 + 3 <em> 7 - 5137</em>8+3<em>7−51 8/7 56 - 121 7 3 3 18
= 296+21−51296 + 21 - 51296+21−51 8/7 - 121 * 7 + 3276
= 266266266 * 8/7 - 847 + 3276
= 2108/7 - 847 + 3276
= 301.14
Therefore, the simplified answer is 301.14.