To simplify the given expression:
ctg2a2a2a - cos2a2a2a / tg2a2a2a - sin2a2a2a
First, we will use the double angle identities to simplify cosine and sine terms:
ctg2a2a2a - cos2a2a2a / tg2a2a2a - sin2a2a2a = ctg2a2a2a - cos2(a)−sin2(a)cos^2(a) - sin^2(a)cos2(a)−sin2(a) / tg2a2a2a - 2sinaaacosaaa = ctg2a2a2a - cos^2aaa + sin^2aaa / tg2a2a2a - 2sinaaacosaaa
Next, we will use the fact that the cotangent function is the reciprocal of the tangent function, and the Pythagorean trigonometric identity:
= 1/tg2a2a2a - 1−sin2(a)1 - sin^2(a)1−sin2(a) / tg2a2a2a - 2sinaaacosaaa = 1/tg2a2a2a - cos^2aaa / tg2a2a2a - 2sinaaacosaaa
Now, we will replace the tangent and cotangent functions with sine and cosine functions:
= 1/sin(2a)/cos(2a)sin(2a)/cos(2a)sin(2a)/cos(2a) - cos^2aaa / sin(2a)/cos(2a)sin(2a)/cos(2a)sin(2a)/cos(2a) - 2sinaaacosaaa = cos2a2a2a/sin2a2a2a - cos^2aaa / sin2a2a2a/cos2a2a2a - 2sinaaacosaaa = cos^2aaa - cos^2aaa / sin^2aaa - 2sinaaacosaaa = 0 / sin^2aaa - 2sinaaacosaaa = 0 / sin2a2a2a = 0
Therefore, the simplified expression is 0.
To simplify the given expression:
ctg2a2a2a - cos2a2a2a / tg2a2a2a - sin2a2a2a
First, we will use the double angle identities to simplify cosine and sine terms:
ctg2a2a2a - cos2a2a2a / tg2a2a2a - sin2a2a2a = ctg2a2a2a - cos2(a)−sin2(a)cos^2(a) - sin^2(a)cos2(a)−sin2(a) / tg2a2a2a - 2sinaaacosaaa = ctg2a2a2a - cos^2aaa + sin^2aaa / tg2a2a2a - 2sinaaacosaaa
Next, we will use the fact that the cotangent function is the reciprocal of the tangent function, and the Pythagorean trigonometric identity:
= 1/tg2a2a2a - 1−sin2(a)1 - sin^2(a)1−sin2(a) / tg2a2a2a - 2sinaaacosaaa = 1/tg2a2a2a - cos^2aaa / tg2a2a2a - 2sinaaacosaaa
Now, we will replace the tangent and cotangent functions with sine and cosine functions:
= 1/sin(2a)/cos(2a)sin(2a)/cos(2a)sin(2a)/cos(2a) - cos^2aaa / sin(2a)/cos(2a)sin(2a)/cos(2a)sin(2a)/cos(2a) - 2sinaaacosaaa = cos2a2a2a/sin2a2a2a - cos^2aaa / sin2a2a2a/cos2a2a2a - 2sinaaacosaaa = cos^2aaa - cos^2aaa / sin^2aaa - 2sinaaacosaaa = 0 / sin^2aaa - 2sinaaacosaaa = 0 / sin2a2a2a = 0
Therefore, the simplified expression is 0.