To simplify the given expression, we need to first simplify the square roots in the numerator:
√63 = √9<em>79 <em> 79<em>7 = √9 √7 = 3√7√175 = √25<em>725 <em> 725<em>7 = √25 √7 = 5√7
Now, the expression becomes:
2√7+3√7−5√72√7 + 3√7 - 5√72√7+3√7−5√7 / √5−√3√5 - √3√5−√3 = 2+3−52 + 3 - 52+3−5√7 / √5−√3√5 - √3√5−√3 = 0√7 / √5−√3√5 - √3√5−√3 = 0 / √5−√3√5 - √3√5−√3 = 0
Therefore, the simplified form of the expression is 0.
To simplify the given expression, we need to first simplify the square roots in the numerator:
√63 = √9<em>79 <em> 79<em>7 = √9 √7 = 3√7
√175 = √25<em>725 <em> 725<em>7 = √25 √7 = 5√7
Now, the expression becomes:
2√7+3√7−5√72√7 + 3√7 - 5√72√7+3√7−5√7 / √5−√3√5 - √3√5−√3 = 2+3−52 + 3 - 52+3−5√7 / √5−√3√5 - √3√5−√3 = 0√7 / √5−√3√5 - √3√5−√3 = 0 / √5−√3√5 - √3√5−√3 = 0
Therefore, the simplified form of the expression is 0.