24 Ноя 2019 в 19:41
128 +1
0
Ответы
1

To simplify the expression, first multiply the terms in the numerator:

(5x - 4)(2x + 2) = 10x^2 + 10x - 8x - 8 = 10x^2 + 2x - 8

Now divide the numerator by the denominator:

(10x^2 + 2x - 8) / (5x^3 + 2x^2 + 2)

To find the limit of this expression as x approaches a certain value, you need to find the limit of each term in the expression.

As x approaches infinity, the terms that have the highest degree in the denominator will dominate the expression. In this case, the highest degree term in the denominator is 5x^3.

So the limit as x approaches infinity of (10x^2 + 2x - 8) / (5x^3 + 2x^2 + 2) is 0, because the degree of the denominator is higher than the degree of the numerator.

19 Апр 2024 в 01:01
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир