Для начала, воспользуемся тригонометрическим тождеством sin^2aaa + cos^2aaa = 1.
У нас дано, что sinaaa = √3/2, следовательно sin^2aaa = 3/4.
Подставим sin^2aaa в уравнение:
3/4 + cos^2aaa = 1cos^2aaa = 1 - 3/4cos^2aaa = 1/4
Так как а принадлежит интервалу 0,π/20, π/20,π/2, то cosaaa > 0. Следовательно, cosaaa = 1/2 таккаккореньиз1/4равен1/2так как корень из 1/4 равен 1/2таккаккореньиз1/4равен1/2
Итак, получаем, что cosaaa = 1/2.
Для начала, воспользуемся тригонометрическим тождеством sin^2aaa + cos^2aaa = 1.
У нас дано, что sinaaa = √3/2, следовательно sin^2aaa = 3/4.
Подставим sin^2aaa в уравнение:
3/4 + cos^2aaa = 1
cos^2aaa = 1 - 3/4
cos^2aaa = 1/4
Так как а принадлежит интервалу 0,π/20, π/20,π/2, то cosaaa > 0. Следовательно, cosaaa = 1/2 таккаккореньиз1/4равен1/2так как корень из 1/4 равен 1/2таккаккореньиз1/4равен1/2
Итак, получаем, что cosaaa = 1/2.