To simplify the expression cos2α−sin2αcos 2α - sin^2αcos2α−sin2α / 2sin2α−cos2α2sin^2α - cos^2α2sin2α−cos2α, we will first expand the cosine term using the double angle formula:
cos 2α = cos^2α - sin^2α
Therefore, we can rewrite the expression as:
cos2α−sin2α−sin2αcos^2α - sin^2α - sin^2αcos2α−sin2α−sin2α / 2sin2α−cos2α2sin^2α - cos^2α2sin2α−cos2α cos2α−2sin2αcos^2α - 2sin^2αcos2α−2sin2α / 2sin2α−cos2α2sin^2α - cos^2α2sin2α−cos2α
Next, we can factor out a negative sign from the numerator:
-2sin2α−cos2α2sin^2α - cos^2α2sin2α−cos2α / 2sin2α−cos2α2sin^2α - cos^2α2sin2α−cos2α
Finally, we can cancel out the common terms in the numerator and the denominator:
-1
Therefore, the simplified form of cos2α−sin2αcos 2α - sin^2αcos2α−sin2α / 2sin2α−cos2α2sin^2α - cos^2α2sin2α−cos2α is -1.
To simplify the expression cos2α−sin2αcos 2α - sin^2αcos2α−sin2α / 2sin2α−cos2α2sin^2α - cos^2α2sin2α−cos2α, we will first expand the cosine term using the double angle formula:
cos 2α = cos^2α - sin^2α
Therefore, we can rewrite the expression as:
cos2α−sin2α−sin2αcos^2α - sin^2α - sin^2αcos2α−sin2α−sin2α / 2sin2α−cos2α2sin^2α - cos^2α2sin2α−cos2α cos2α−2sin2αcos^2α - 2sin^2αcos2α−2sin2α / 2sin2α−cos2α2sin^2α - cos^2α2sin2α−cos2α
Next, we can factor out a negative sign from the numerator:
-2sin2α−cos2α2sin^2α - cos^2α2sin2α−cos2α / 2sin2α−cos2α2sin^2α - cos^2α2sin2α−cos2α
Finally, we can cancel out the common terms in the numerator and the denominator:
-1
Therefore, the simplified form of cos2α−sin2αcos 2α - sin^2αcos2α−sin2α / 2sin2α−cos2α2sin^2α - cos^2α2sin2α−cos2α is -1.