To solve the equation 5 - 4sin^2xxx = 4cosxxx, we can use the Pythagorean identity sin^2xxx + cos^2xxx = 1.
Rearrange the given equation to have everything in terms of sinxxx or cosxxx: 5 - 4sin^2xxx = 4cosxxx
4cosxxx = 5 - 4sin^2xxx
Replace sin^2xxx with 1 - cos^2xxx using the Pythagorean identity: 4cosxxx = 5 - 41−cos2(x)1 - cos^2(x)1−cos2(x)
4cosxxx = 5 - 4 + 4cos^2xxx
4cosxxx = 1 + 4cos^2xxx
Rearrange the equation in standard quadratic form: 4cos^2xxx - 4cosxxx + 1 = 0
This is a quadratic equation in terms of cosxxx. We can solve it by using the quadratic formula: cosxxx = −(−4)±√((−4)2−4(4)(1))-(-4) ± √((-4)^2 - 4(4)(1))−(−4)±√((−4)2−4(4)(1))/2(4)2(4)2(4)
cosxxx = 4±√(16−16)4 ± √(16 - 16)4±√(16−16)/888
cosxxx = 4±04 ± 04±0/8 cosxxx = 1/2 or 1/2
Since cosxxx = 1/2, the possible values for x are x = π/3 or x = 5π/3.
Therefore, the solutions to the equation 5 - 4sin^2xxx = 4cosxxx are x = π/3 and x = 5π/3.
To solve the equation 5 - 4sin^2xxx = 4cosxxx, we can use the Pythagorean identity sin^2xxx + cos^2xxx = 1.
Rearrange the given equation to have everything in terms of sinxxx or cosxxx:
5 - 4sin^2xxx = 4cosxxx 4cosxxx = 5 - 4sin^2xxx
Replace sin^2xxx with 1 - cos^2xxx using the Pythagorean identity:
4cosxxx = 5 - 41−cos2(x)1 - cos^2(x)1−cos2(x) 4cosxxx = 5 - 4 + 4cos^2xxx 4cosxxx = 1 + 4cos^2xxx
Rearrange the equation in standard quadratic form:
4cos^2xxx - 4cosxxx + 1 = 0
This is a quadratic equation in terms of cosxxx. We can solve it by using the quadratic formula:
cosxxx = −(−4)±√((−4)2−4(4)(1))-(-4) ± √((-4)^2 - 4(4)(1))−(−4)±√((−4)2−4(4)(1))/2(4)2(4)2(4) cosxxx = 4±√(16−16)4 ± √(16 - 16)4±√(16−16)/888 cosxxx = 4±04 ± 04±0/8
cosxxx = 1/2 or 1/2
Since cosxxx = 1/2, the possible values for x are x = π/3 or x = 5π/3.
Therefore, the solutions to the equation 5 - 4sin^2xxx = 4cosxxx are x = π/3 and x = 5π/3.