Тело скользит по наклонной плоскости с углом наклона 30 градусов. Коэффициент трения между плоскостью и телом равен 0,3. С каким ускорением двигается тело?
Для начала найдем ускорение, с которой тело будет двигаться под действием силы тяжести. Это ускорение будет равно g sin(30), где g - ускорение свободного падения (около 9,8 м/с^2). g sin(30) ≈ 9,8 * 0,5 ≈ 4,9 м/с^2
Далее найдем силу трения, действующую на тело. Сила трения равна коэффициенту трения (0,3) умноженному на нормальную силу (равную силе тяжести, умноженной на cos(30)): F_трения = μ F_норм = 0,3 m g cos(30)
Теперь можем найти ускорение тела, учитывая действующую силу трения: a = (m g sin(30) - F_трения) / m a = (m g sin(30) - 0,3 m g cos(30)) / m a = g (sin(30) - 0,3 * cos(30))
Подставим значения и вычислим: a ≈ 4,9 (0,5 - 0,3 0,87) ≈ 4,9 (0,5 - 0,261) ≈ 4,9 0,239 ≈ 1,17 м/с^2
Таким образом, тело движется по наклонной плоскости с ускорением примерно равным 1,17 м/с^2.
Для начала найдем ускорение, с которой тело будет двигаться под действием силы тяжести. Это ускорение будет равно g sin(30), где g - ускорение свободного падения (около 9,8 м/с^2).
g sin(30) ≈ 9,8 * 0,5 ≈ 4,9 м/с^2
Далее найдем силу трения, действующую на тело. Сила трения равна коэффициенту трения (0,3) умноженному на нормальную силу (равную силе тяжести, умноженной на cos(30)):
F_трения = μ F_норм = 0,3 m g cos(30)
Теперь можем найти ускорение тела, учитывая действующую силу трения:
a = (m g sin(30) - F_трения) / m
a = (m g sin(30) - 0,3 m g cos(30)) / m
a = g (sin(30) - 0,3 * cos(30))
Подставим значения и вычислим:
a ≈ 4,9 (0,5 - 0,3 0,87) ≈ 4,9 (0,5 - 0,261) ≈ 4,9 0,239 ≈ 1,17 м/с^2
Таким образом, тело движется по наклонной плоскости с ускорением примерно равным 1,17 м/с^2.