Задача по физике Рабочий подъёмник массой 5 т перемещается в шахте глубиной 900 м. Когда подъёмник находится на дне шахты, на него начинает действовать вертикально вверх сила тяги 60 кН. Через 150 м после начала подъёма сила тяги изменяется так, что на протяжении следующих 600 м движение подъёмника становится равномерным. Наконец, сила тяги изменяется ещё раз так, что подъёмник останавливается, достигнув вершины шахты. Силу трения принять постоянной и равной 5 кН. Рассмотреть движение подъёмника на этих участках и определить полную продолжительность подъёма.
На первом участке движения подъёмника сила тяги 60 кН направлена вверх, сила трения 5 кН направлена вниз. Подъёмник движется с ускорением, применяя второй закон Ньютона:
ΣF = ma
где ΣF - сумма всех сил, a - ускорение, m - масса подъёмника. Подставляем известные значения:
60 кН - 5 кН = 5000 кг * a
a = 0.011 м/с^2
Учитывая, что подъёмник начинает движение с покоя, запишем закон движения:
v = u + at
где v - скорость на конечной точке участка, u - начальная скорость (0), t - время движения на этом участке. Находим время движения на первом участке:
v = 0 + 0.011 * t
150 = 0.011 * t
t = 13636 сек
На следующем участке движение становится равномерным, т.е. ускорение равно нулю. Сила тяги равна силе трения:
60 кН = 5000 кг * 9.81 м/с^2
60 кН = 49050 Н
60 кН = 60 кН - 5 кН
Находим скорость подъёмника на конце этого участка:
v = u + at
0 = 49050 150 + 5 t
t = 29454 сек
На последнем участке движение замедляется до остановки. Снова применяем второй закон Ньютона:
На первом участке движения подъёмника сила тяги 60 кН направлена вверх, сила трения 5 кН направлена вниз. Подъёмник движется с ускорением, применяя второй закон Ньютона:
ΣF = ma
где ΣF - сумма всех сил, a - ускорение, m - масса подъёмника. Подставляем известные значения:
60 кН - 5 кН = 5000 кг * a
a = 0.011 м/с^2
Учитывая, что подъёмник начинает движение с покоя, запишем закон движения:
v = u + at
где v - скорость на конечной точке участка, u - начальная скорость (0), t - время движения на этом участке. Находим время движения на первом участке:
v = 0 + 0.011 * t
150 = 0.011 * t
t = 13636 сек
На следующем участке движение становится равномерным, т.е. ускорение равно нулю. Сила тяги равна силе трения:
60 кН = 5000 кг * 9.81 м/с^2
60 кН = 49050 Н
60 кН = 60 кН - 5 кН
Находим скорость подъёмника на конце этого участка:
v = u + at
0 = 49050 150 + 5 t
t = 29454 сек
На последнем участке движение замедляется до остановки. Снова применяем второй закон Ньютона:
60 кН = 5000 кг * a + 5 кН
a = -11,8 м/с^2
Найдем время движения на этом участке:
v = 0 - 11,8 * t
900 = 11,8 * t
t = 76,27 сек
Теперь находим общее время подъема подъемника:
T = 13636 + 29454 + 76,27 = 43166,27 сек
Или примерно 12 часов.