Точка движется по кривой. Ее координаты изменяются по закону x = A1t3 и y = A2t, где A1 = 2 м/с3, A2 = 3 м/с. Найти величину скорости v в момент времени t = 2 с.
Скорость v в момент времени t = 2 c будет равна скорости точки на этом участке кривой: v = sqrt((dx/dt)^2 + (dy/dt)^2) = sqrt(12^2 + 3^2) = sqrt(144 + 9) = sqrt(153) ≈ 12.37 м/с
Итак, скорость точки в момент времени t = 2 с составляет около 12.37 м/с.
Для нахождения скорости в момент времени t = 2 секунды, нужно найти производные x и y по времени t:
dx/dt = 3A1t^2 = 322^2 = 12 м/с
dy/dt = A2 = 3 м/с
Скорость v в момент времени t = 2 c будет равна скорости точки на этом участке кривой:
v = sqrt((dx/dt)^2 + (dy/dt)^2) = sqrt(12^2 + 3^2) = sqrt(144 + 9) = sqrt(153) ≈ 12.37 м/с
Итак, скорость точки в момент времени t = 2 с составляет около 12.37 м/с.