Собственная частота идеального колебательного контура конденсатором емкостью 5 нФ составляет 6 кГц. Когда параллельно конденсатора подключили второй конденсатор, частота уменьшилась до 2 кГц. Определить индуктивность катушки и емкость второго конденсатора.

31 Янв 2020 в 05:45
196 +1
0
Ответы
1

Известно, что собственная частота идеального колебательного контура определяется формулой:

f = 1 / 2π√(LC)2π√(LC)2π(LC)

Где f - частота, L - индуктивность катушки, C - емкость конденсатора.

Из условия задачи имеем два уравнения:

1) 6 кГц = 1 / 2π√(5<em>10(−9)</em>L)2π√(5<em>10^(-9) </em> L)2π(5<em>10(9)</em>L)

2) 2 кГц = 1 / 2π√((5<em>10(−9)+C)</em>L)2π√((5<em>10^(-9) + C) </em> L)2π((5<em>10(9)+C)</em>L)

Решим систему уравнений:

Для первого уравнения получаем: L = 1/(2π<em>6</em>103)1 / (2π<em>6</em>10^3)1/(2π<em>6</em>103)^2 / 5∗10(−9)5*10^(-9)510(9) ≈ 7.96 мГн

Подставляем второе уравнение:

2 кГц = 1 / (2π√((510^(-9) + C) 7.96*10^(-3))

Следовательно, C ≈ 10 нФ.

Итак, результат: индуктивность катушки - 7.96 мГн, емкость второго конденсатора - 10 нФ.

18 Апр 2024 в 18:27
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир