По прямому шоссе со скоростью 10 м/с выехал автомобиль. Когда он проезжал по пункту B, с равноускорением 2М/сек2из пункта А начал двигаться второй автомобиль, и через 15 сек. добрался до первой. Какое расстояние между точками A и B?
Для решения этой задачи используем формулу для расстояния, пройденного телом с равноускоренным движением:
S = Vt + (at^2)/2
Где: S - расстояние между точками A и B V - начальная скорость второго автомобиля (равна 0) a - ускорение второго автомобиля (2 м/с^2) t - время, за которое второй автомобиль догнал первый (15 секунд)
S = 015 + (2 15^2)/2 S = 0 + (2 * 225)/2 S = 0 + 450/2 S = 225 м
Ответ: расстояние между точками A и B равно 225 метрам.
Для решения этой задачи используем формулу для расстояния, пройденного телом с равноускоренным движением:
S = Vt + (at^2)/2
Где:
S - расстояние между точками A и B
V - начальная скорость второго автомобиля (равна 0)
a - ускорение второго автомобиля (2 м/с^2)
t - время, за которое второй автомобиль догнал первый (15 секунд)
S = 015 + (2 15^2)/2
S = 0 + (2 * 225)/2
S = 0 + 450/2
S = 225 м
Ответ: расстояние между точками A и B равно 225 метрам.