Дан прямоугольный треугольник ABC. На катете AC отмечена точка M, а на продолжении катета BC за точку C — точка N так, что CM = CB и CA = CN. а) Пусть CQ и CF — медианы треугольников ABC и NMC соответственно. Докажите, что CF и CQ перпендикулярны. б) Пусть L — это точка пересечения BM и AN, K — точка пересечения NM и AB, BC = 3, AC = 5 Найдите KL.

3 Сен 2020 в 19:42
364 +1
0
Ответы
1

а) Поскольку CM = CB, то треугольник CMB равнобедренный, что означает, что CF является медианой в треугольнике NMC. Аналогично, поскольку CA = CN, то треугольник CAN также равнобедренный, что означает, что CQ является медианой в треугольнике ABC. Из свойств медиан треугольника следует, что CF и CQ перпендикулярны.

б) Из равнобедренности треугольников CMB и CAN следует, что углы CMB и CAN равны между собой и равны углу C. Тогда угол AMB равен углу CMN. Так как в треугольнике ANM угол AMN равен углу ANM, то треугольники ANM и AMB подобны.
Отсюда следует, что
AM/AN = BM/AM,
где AM = CN = CA = 5, AN = AM + MN = 2 AM,
BM = BC - CM = 3 - 2 = 1.
Следовательно,
5/2</em>52</em>52</em>5 = 1/AM,
1 = 2,
AM = 2.5.
Из подобия треугольников:
MN/AB = AN/AB,
MN/8 = 2/5,
MN = 3,2.
Из треугольника NBM получаем, что KL = 3,2 * 1 / 5 = 0,64.

18 Апр 2024 в 10:36
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир