Сумма углов выпуклого n-угольника и одного из его внешних углов равна 990 найдите n?

21 Сен 2020 в 19:42
439 +1
0
Ответы
1

Сумма углов выпуклого n-угольника равна (n-2)*180°, а сумма всех внешних углов n-угольника равна 360°.

Из условия задачи у нас есть углы n-угольника и один из внешних углов:
(n-2)180 + 360 = 990
(n-2)180 = 630
n-2 = 3.5
n = 5.5

Так как количество вершин n-угольника должно быть целым числом, то н=6.

Ответ: n=6.

17 Апр 2024 в 23:29
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир