В треугольнике АВС угол С=90,sinA=13/14,АС=6√3.найдите АВ.

2 Июн 2021 в 19:40
91 +1
0
Ответы
1

По теореме Пифагора в прямоугольном треугольнике:

AB^2 = AC^2 + BC^2

Также из условия задачи известно, что sin(A) = 13/14, где A - угол противоположный стороне AB. Тогда можно определить, что:

sin(A) = BC/AC
13/14 = BC/6√3
BC = 6√3 * 13/14
BC = 6

Теперь можем подставить значение BC в формулу Пифагора:

AB^2 = (6√3)^2 + 6^2
AB^2 = 108 + 36
AB^2 = 144
AB = 12

Итак, длина стороны AB равна 12.

17 Апр 2024 в 17:33
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир