В равнобедренном треугольнике ABC проведена высота BD к основанию AC. Длина высоты — 9,9 см, длина боковой стороны — 19,8 см. Определи углы этого треугольника.

4 Окт 2021 в 19:44
60 +1
0
Ответы
1

Так как треугольник ABC является равнобедренным, то углы при основании также равны. Обозначим угол ABC (и ABD) через угол x.

Из прямоугольного треугольника ABD с высотой BD найдем катет AD:
AD = sqrt(AB^2 - BD^2) = sqrt(19.8^2 - 9.9^2) = sqrt(392.04 - 98.01) = sqrt(294.03) ≈ 17.14 см.

Теперь мы знаем все стороны треугольника ABC. Рассмотрим треугольник ABC:

cos(x) = AD / AB = 17.14 / 19.8 ≈ 0.866
x = arccos(0.866) ≈ 30 градусов

Таким образом, углы треугольника равны: 30°, 60°, 90°.

17 Апр 2024 в 10:31
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир