В треугольнике АВС отмечены середины M и N сторон ВС и АС соответственно. площадь четырехугольника АNMВ-129. найдите площадь треугольника СNM

26 Окт 2021 в 19:43
103 +3
0
Ответы
1

Обозначим площадь треугольника СNM через S.

Так как S = (1/2) СN CM * sin(C), где C - угол С, sin(C) = sin(180 - B - A) = sin(B + A) = sin(90) = 1.

Также известно, что площадь четырехугольника ANMB равна 129, а S = 129 + 129 = 258.

Отметим, что треугольники MAN и MBN равные и равны по площади, так как они равнобедренные и равносторонние.

Площадь треугольника СNM равна S - площадь треугольника MAN - площадь треугольника MBN = 258/2 - 129/2 = 129.

Итак, площадь треугольника СNM равна 129.

17 Апр 2024 в 09:26
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир