. Основания равнобокой трапеции равны 15 см и 33 см, а диагональ делит ее острый угол пополам. Найдите площадь трапеции.

25 Апр 2019 в 19:47
458 +1
0
Ответы
1

Площадь равнобокой трапеции можно найти по формуле: S = (a + b) * h / 2, где a и b - основания трапеции, h - высота трапеции.

Так как диагональ делит острый угол трапеции пополам, то она является высотой, проведенной к основанию длиной 15 см. Для нахождения высоты делаем прямоугольный треугольник из половины диагонали, высоты и половины меньшего основания. Из треугольника получаем, что h^2 + 7.5^2 = 33^2, h = sqrt(33^2 - 7.5^2) = 31.5 см.

Теперь можем найти площадь трапеции: S = (15 + 33) 31.5 / 2 = 48 31.5 / 2 = 1512 см^2.

Площадь равнобокой трапеции равна 1512 см^2.

28 Мая 2024 в 17:27
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир