Дана правильная четырехугольная пирамида SABCD все ребра которой равны 1. Необходимо найти расстояние от точки А до плоскости SBC.

13 Фев 2020 в 19:44
183 +1
0
Ответы
1

Расстояние от точки А до плоскости SBC можно найти по формуле:

d = |(AX (By - Cy) + AY (Cx - Bx) + Bx Cy - Cx By)| / AB

Где:
AX, AY - координаты точки A
Bx, By, Cx, Cy - координаты точек B, C
AB - длина любого ребра пирамиды (в данном случае, равна 1).

Так как все ребра пирамиды равны 1, то координаты точек B, C будут (1,0,0) и (0,1,0) соответственно.

Подставим это в формулу:

d = |(0 (0 - 1) + 0 (1 - 1) + 1 1 - 0 0)| / 1
d = |(0 - 0 + 1 - 0)| / 1
d = |1| = 1

Ответ: расстояние от точки А до плоскости SBC равно 1.

18 Апр 2024 в 17:24
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир