1)Найдите катет прямоугольного треугольника, если его гипотенуза и второй катет соответственно равны: 1) 17 см и 15 см; 2) 9 см и 5 см.2)В равнобедренном треугольнике ABC. AB=BC=37см, AC=24см. Найдите высоту BD треугольника.3)Сторона ромба равна 41 см, а одна из его диагоналей - 18 см. Найдите вторую диагональ ромба.

15 Фев 2020 в 19:44
207 +1
0
Ответы
1

1)
a) По теореме Пифагора находим катет: (a = \sqrt{c^2 - b^2} = \sqrt{17^2 - 15^2} = \sqrt{289 - 225} = \sqrt{64} = 8) см.
б) По теореме Пифагора находим катет: (a = \sqrt{c^2 - b^2} = \sqrt{9^2 - 5^2} = \sqrt{81 - 25} = \sqrt{56} \approx 7.48) см.

2)
Для равнобедренного треугольника (ABC) высота, опущенная из вершины угла (B), делит треугольник на два прямоугольных треугольника. Из теоремы Пифагора для этих прямоугольных треугольников мы можем найти (BD):
[BD = \sqrt{AC^2 - \left(\frac{AB}{2}\right)^2} = \sqrt{24^2 - \left(\frac{37}{2}\right)^2} = \sqrt{576 - 324.5} = \sqrt{251.5} \approx 15.86 \text{см}].

3)
Диагонали ромба перпендикулярны и делятся пополам. Таким образом, мы можем найти вторую диагональ ромба, используя теорему Пифагора:
[d_2 = 2 \cdot \sqrt{(41/2)^2 - 18^2} = 2 \cdot \sqrt{20.5^2 - 18^2} = 2 \cdot \sqrt{420.25 - 324} = 2 \cdot \sqrt{96.25} = 2 \cdot 9.812 = 19.624 \text{см}].

18 Апр 2024 в 17:16
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир