а) y= 4/x^4 + 4x^-4 + 8*sqrt(x^2)y'= -16/x^5 - 16x^-5 + 8/xy' = -16/x^5 - 16/x^5 + 8/xy' = -32/x^5 + 8/x
б) y=4sin(x) - 5ctg(x)y' = 4cos(x) + 5csc^2(x)
в) y=(x^2-6x)/(x+2)y' = [(x+2)*(2x-6) - (x^2-6x)] / (x+2)^2y' = (2x^2 - 12x + 4x - 12 - x^2 + 6x) / (x+2)^2y' = (x^2 - 2x - 12) / (x+2)^2
г) y=(4-x^2)sin(x)y' = (4-x^2)cos(x) + sin(x)*(-2x)y' = 4cos(x) - x^2cos(x) - 2xsin(x)
а) y= 4/x^4 + 4x^-4 + 8*sqrt(x^2)
y'= -16/x^5 - 16x^-5 + 8/x
y' = -16/x^5 - 16/x^5 + 8/x
y' = -32/x^5 + 8/x
б) y=4sin(x) - 5ctg(x)
y' = 4cos(x) + 5csc^2(x)
в) y=(x^2-6x)/(x+2)
y' = [(x+2)*(2x-6) - (x^2-6x)] / (x+2)^2
y' = (2x^2 - 12x + 4x - 12 - x^2 + 6x) / (x+2)^2
y' = (x^2 - 2x - 12) / (x+2)^2
г) y=(4-x^2)sin(x)
y' = (4-x^2)cos(x) + sin(x)*(-2x)
y' = 4cos(x) - x^2cos(x) - 2xsin(x)