Найти длину наклонной Из точки M, которая лежит вне плоскости а, проведены к этой плоскости наклонные MN и МК, образующие с ней углы 30° и 45° соответственно. Найдите длину наклонной MK, если длина проекции наклонной MN на плоскость а равна 4 корней из 3 см.

14 Янв 2021 в 19:43
3 092 +2
0
Ответы
1

 В треугольнике MNO ∠N = 30°, ∠O = 90°, сторона NO = 4√3 по условию/ Найдем сторону MN:

Cos 30° = NO/MN = √3/2; ⇒ 4√3/MN = √3/2;  ⇒ MN = 4√3 * 2 / √3 ;

MN = 8 см. Тогда MO = 4 см. (катет, лежащий против угла 30° = половине гипотенузы).

В треугольнике MOK ∠O = 90° ; ∠K = 45°, тогда ∠M = 45°. ⇒ Треугольник MOK равнобедренный и OK = 4 см.

По т.Пифагора МК = √(16+16) = 4√2 см.

Ответ: MK = 4√2 см.

15 Янв 2021 в 16:36
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир