а) y' = 4tg^3(2x)ctg^2(2x)2arcsin(4x^3) + tg^4(2x)(1/(1-(4x^3)^2))[12x^2]y' = 8tg^3(2x)ctg^2(2x)arcsin(4x^3) + 12x^2tg^4(2x)/(1-16x^6)
б) y' = (3(4x^3)(tg(x)cos(x)-x(sin^2(x)+tg^2(x))))/(tg^4(x))
в) y' = (5(3x^2)cos(sqrt(x)) - (5x^3)(-1/(2sqrt(x))sin(sqrt(x))))/(cos(sqrt(x))^2)
г) y' = 3arcsin^2(2x)/sqrt(1-4x^2)[2]ctg^2(7x^4) - arcsin^3(2x)2ctg(7x^4)/sin^2(7x^4)[28x^3]y' = [6arcsin^2(2x)ctg^2(7x^4)/(sqrt(1-4x^2)) - 14x^3arcsin^3(2x)*ctg(7x^4)/sin^2(7x^4)]/(1-4x^2)
а) y' = 4tg^3(2x)ctg^2(2x)2arcsin(4x^3) + tg^4(2x)(1/(1-(4x^3)^2))[12x^2]
y' = 8tg^3(2x)ctg^2(2x)arcsin(4x^3) + 12x^2tg^4(2x)/(1-16x^6)
б) y' = (3(4x^3)(tg(x)cos(x)-x(sin^2(x)+tg^2(x))))/(tg^4(x))
в) y' = (5(3x^2)cos(sqrt(x)) - (5x^3)(-1/(2sqrt(x))sin(sqrt(x))))/(cos(sqrt(x))^2)
г) y' = 3arcsin^2(2x)/sqrt(1-4x^2)[2]ctg^2(7x^4) - arcsin^3(2x)2ctg(7x^4)/sin^2(7x^4)[28x^3]
y' = [6arcsin^2(2x)ctg^2(7x^4)/(sqrt(1-4x^2)) - 14x^3arcsin^3(2x)*ctg(7x^4)/sin^2(7x^4)]/(1-4x^2)