(1)вычислите а)2cos 5П/6+tg П/3б)cos111гр cos69гр - sin111гр sin69гр(2)известно, что sin(П-альфа)=корень из 2/2найдите cos 2альфа(3)упрастите выражение а)ctg^2альфа+cos^2альфа-1/sin^2альфаб)sin5альфа-sinальфа/2cos3альфа*ctgальфа-1(4) докажите тождествоctg^2альфа-1=cos2альфа/sin^2альфа(5)найдите значение x (в радианах)cos74гр+cos16гр=2cosxcos29гр

18 Июл 2021 в 19:46
111 +1
0
Ответы
1

(1)
a) 2cos(5π/6) + tg(π/3) = 2(-√3/2) + (√3) = -√3 - √3 = -2√3
b) cos(111°)cos(69°) - sin(111°)sin(69°) = cos(42°) - sin(42°) = cos(42°) - cos(48°) = -2sin(45°)sin(3°) = -√2sin(3°)

(2)
sin(π-α) = √2/2
sinα = sin(π-α) = √2/2
cos^2α = 1 - sin^2α = 1 - 2/4 = 2/4 = 1/2

(3)
a) ctg^2α + cos^2α - 1/sin^2α = 1/sin^2α + cos^2α - 1/sin^2α = cos^2α
b) sin(5α) - sinα / 2cos(3α)ctgα - 1 = 0 / 2(4cos^3α - 3cosα)ctgα - 1 = 0 / 8cos^3α - 6cosαctgα = 1

(4)
ctg^2α - 1 = (cos^2α/sin^2α) - 1 = (cos^2α - sin^2α) / sin^2α = cos(2α) / sin^2α = cos(2α) / sin^2α

(5)
cos(74°) + cos(16°) = 2cos(x)cos(29°)
cos(74°) + cos(16°) = 2cos(x)cos(29°)
2cos(45°+29°) + 2cos(45°-29°) = 2cos(x)cos(29°)
2(cos(45°)cos(29°) - sin(45°)sin(29°)) + 2(cos(45°)cos(29°) + sin(45°)sin(29°)) = 2cos(x)cos(29°)
2((√2/2 √3/2) - (√2/2 √1/2)) + 2((√2/2 √3/2) + (√2/2 √1/2)) = 2cos(x)(√3/2)
2(√6/4 - √2/4) + 2(√6/4 + √2/4) = √3cos(x)
(√6 - √2) + (√6 + √2) = √3cos(x)
2√6 = √3cos(x)
cos(x) = 2√6 / √3 = 2√2

17 Апр 2024 в 14:22
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир