Через середину стороны AB △ABC проведена прямая, перпендикулярная к AB, пересекающая BC в точке E. BC=16 см, периметр △AEC равен 20 см. Найдите AC. Дайте ответ в сантиметрах.

11 Мая 2019 в 19:46
237 +1
0
Ответы
1

Из условия задачи мы знаем, что треугольник ABC прямоугольный, так как прямая, перпендикулярная к стороне AB, проведена через середину стороны AB.

Так как прямая, проходящая через середину стороны AB, делит треугольник на 2 равных по площади треугольника, то AE=EC.

Также из условия задачи мы знаем, что периметр треугольника AEC равен 20 см. Так как AE=EC, то AC=10 см.

Теперь для нахождения AC воспользуемся теоремой Пифагора для прямоугольного треугольника ABC:

AC^2 + BC^2 = AB^2

AC^2 + 16^2 = AB^2

AC^2 + 256 = AB^2

Так как треугольник ABC прямоугольный, то AB^2 = AC^2 + BC^2 = 10^2 + 16^2 = 100 + 256 = 356

AB = √356 ≈ 18.87 см

Наконец, найдем AC:

AC = √(AB^2 - BC^2) = √(356 - 256) = √100 = 10 см

Ответ: AC = 10 см.

28 Мая 2024 в 16:31
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир