We can rewrite the equation as: 8sin2(5x)+12sin(10x)+cos2(5x)=48\sin^2(5x) + \frac{1}{2}\sin(10x) + \cos^2(5x) = 48sin2(5x)+21sin(10x)+cos2(5x)=4
Using the double angle formula for sin2x2x2x and cos2x2x2x: 8sin2(5x)+2sin(5x)cos(5x)+cos2(5x)=48\sin^2(5x) + 2\sin(5x)\cos(5x) + \cos^2(5x) = 48sin2(5x)+2sin(5x)cos(5x)+cos2(5x)=4
Solving this quadratic equation by factoring or using the quadratic formula will give the solutions for uuu, which can then be substituted back in for sin(5x)sin(5x)sin(5x) to solve for xxx.
We can rewrite the equation as:
8sin2(5x)+12sin(10x)+cos2(5x)=48\sin^2(5x) + \frac{1}{2}\sin(10x) + \cos^2(5x) = 48sin2(5x)+21 sin(10x)+cos2(5x)=4
Using the double angle formula for sin2x2x2x and cos2x2x2x:
8sin2(5x)+2sin(5x)cos(5x)+cos2(5x)=48\sin^2(5x) + 2\sin(5x)\cos(5x) + \cos^2(5x) = 48sin2(5x)+2sin(5x)cos(5x)+cos2(5x)=4
Since sin2(x)+cos2(x)=1\sin^2(x) + \cos^2(x) = 1sin2(x)+cos2(x)=1:
8sin2(5x)+2sin(5x)cos(5x)+1=48\sin^2(5x) + 2\sin(5x)\cos(5x) + 1 = 48sin2(5x)+2sin(5x)cos(5x)+1=4
Let u=sin(5x)u = \sin(5x)u=sin(5x):
8u2+2u+1=48u^2 + 2u + 1 = 48u2+2u+1=4 8u2+2u−3=08u^2 + 2u - 3 = 08u2+2u−3=0
Solving this quadratic equation by factoring or using the quadratic formula will give the solutions for uuu, which can then be substituted back in for sin(5x)sin(5x)sin(5x) to solve for xxx.