The given function is ( Y = \arctan(x - \sqrt{1 + x^2}) ).
Let ( u = x - \sqrt{1 + x^2} ).
Differentiating both sides with respect to x:
[ \frac{du}{dx} = 1 - \frac{1}{2\sqrt{1+x^2}} \cdot 2x ]
[ \frac{du}{dx} = 1 - \frac{x}{\sqrt{1+x^2}} ]
Now,
[ \frac{dY}{dx} = \frac{d(\arctan u)}{du} \cdot \frac{du}{dx} ]
[ \frac{dY}{dx} = \frac{1}{1+u^2} \cdot \left(1 - \frac{x}{\sqrt{1+x^2}}\right) ]
Since ( u = x - \sqrt{1 + x^2} ), we have
[ \frac{dY}{dx} = \frac{1}{1+(x - \sqrt{1+x^2})^2} \cdot \left(1 - \frac{x}{\sqrt{1+x^2}}\right) ]
[ \frac{dY}{dx} = \frac{1}{1+x^2 - 2x\sqrt{1+x^2} + 1+x^2} \cdot \left(1 - \frac{x}{\sqrt{1+x^2}}\right) ]
[ \frac{dY}{dx} = \frac{1}{2+2x^2 - 2x\sqrt{1+x^2}} \cdot \left(\frac{\sqrt{1+x^2} - x}{\sqrt{1+x^2}} \right) ]
Hence, the derivative of the function ( Y = \arctan(x - \sqrt{1 + x^2}) ) is given by the above expression.
The given function is ( Y = \arctan(x - \sqrt{1 + x^2}) ).
Let ( u = x - \sqrt{1 + x^2} ).
Differentiating both sides with respect to x:
[ \frac{du}{dx} = 1 - \frac{1}{2\sqrt{1+x^2}} \cdot 2x ]
[ \frac{du}{dx} = 1 - \frac{x}{\sqrt{1+x^2}} ]
Now,
[ \frac{dY}{dx} = \frac{d(\arctan u)}{du} \cdot \frac{du}{dx} ]
[ \frac{dY}{dx} = \frac{1}{1+u^2} \cdot \left(1 - \frac{x}{\sqrt{1+x^2}}\right) ]
Since ( u = x - \sqrt{1 + x^2} ), we have
[ \frac{dY}{dx} = \frac{1}{1+(x - \sqrt{1+x^2})^2} \cdot \left(1 - \frac{x}{\sqrt{1+x^2}}\right) ]
[ \frac{dY}{dx} = \frac{1}{1+x^2 - 2x\sqrt{1+x^2} + 1+x^2} \cdot \left(1 - \frac{x}{\sqrt{1+x^2}}\right) ]
[ \frac{dY}{dx} = \frac{1}{2+2x^2 - 2x\sqrt{1+x^2}} \cdot \left(\frac{\sqrt{1+x^2} - x}{\sqrt{1+x^2}} \right) ]
Hence, the derivative of the function ( Y = \arctan(x - \sqrt{1 + x^2}) ) is given by the above expression.