16 Ноя 2021 в 19:42
42 +1
1
Ответы
1

To solve this equation, we need to isolate the variable x.

First, we will square both sides of the equation to get rid of the square roots:

Sqrt(x−2)+Sqrt(5)Sqrt(x-2) + Sqrt(5)Sqrt(x2)+Sqrt(5)^2 = Sqrt202020^2
x−2x-2x2 + 2Sqrtx−2x-2x2*Sqrt555 + 5 = 20

Now we can simplify the equation by expanding the left side:

x - 2 + 2Sqrt5(x−2)5(x-2)5(x2) + 5 = 20
x + 3 + 2Sqrt5x−105x - 105x10 = 20

Next, we can isolate the square root term on one side of the equation and move the other terms to the other side:

2Sqrt5x−105x - 105x10 = 20 - x - 3
2Sqrt5x−105x - 105x10 = 17 - x

Now, square both sides to eliminate the square root term:

2Sqrt(5x−10)2Sqrt(5x - 10)2Sqrt(5x10)^2 = 17−x17 - x17x^2
45x−105x - 105x10 = 17−x17 - x17x17−x17 - x17x 20x - 40 = 289 - 34x + x^2
x^2 + 54x - 329 = 0

Now we have a quadratic equation that we can solve using the quadratic formula:

x = −54±sqrt(542−4(1)(−329))-54 ± sqrt(54^2 - 4(1)(-329))54±sqrt(5424(1)(329)) / 2111 x = −54±sqrt(2916+1316)-54 ± sqrt(2916 + 1316)54±sqrt(2916+1316) / 2
x = −54±sqrt(4232)-54 ± sqrt(4232)54±sqrt(4232) / 2
x = −54±65.071-54 ± 65.07154±65.071 / 2

Now we have two possible solutions for x:

x1 = −54+65.071-54 + 65.07154+65.071 / 2 = 11.071
x2 = −54−65.071-54 - 65.0715465.071 / 2 = -59.071

Therefore, the solutions to the equation are x = 11.071 and x = -59.071.

17 Апр 2024 в 08:42
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир