∫x3+4x2−5x^3 + 4x^2 - 5x3+4x2−5dx = 1/41/41/4x^4 + 4/34/34/3x^3 - 5x + C
∫3x2−x3x^2 - x3x2−x^2 dx = ∫9x4−6x3+x29x^4 - 6x^3 + x^29x4−6x3+x2 dx = 9/59/59/5x^5 - 3/23/23/2x^4 + 1/31/31/3x^3 + C
∫x2+xx^2 + xx2+x^2 dx = ∫x4+2x3+x2x^4 + 2x^3 + x^2x4+2x3+x2 dx = 1/51/51/5x^5 + 1/21/21/2x^4 + 1/31/31/3x^3 + C
∫4x3+x24x^3 + x^24x3+x2/x dx = ∫4x2+x4x^2 + x4x2+x dx = 4/34/34/3x^3 + 1/21/21/2x^2 + C
∫x3+4x2−5x^3 + 4x^2 - 5x3+4x2−5dx = 1/41/41/4x^4 + 4/34/34/3x^3 - 5x + C
∫3x2−x3x^2 - x3x2−x^2 dx = ∫9x4−6x3+x29x^4 - 6x^3 + x^29x4−6x3+x2 dx = 9/59/59/5x^5 - 3/23/23/2x^4 + 1/31/31/3x^3 + C
∫x2+xx^2 + xx2+x^2 dx = ∫x4+2x3+x2x^4 + 2x^3 + x^2x4+2x3+x2 dx = 1/51/51/5x^5 + 1/21/21/2x^4 + 1/31/31/3x^3 + C
∫4x3+x24x^3 + x^24x3+x2/x dx = ∫4x2+x4x^2 + x4x2+x dx = 4/34/34/3x^3 + 1/21/21/2x^2 + C