Назовём натуральное число монастырским, если среди всех его натуральных делителей (включая 1 и само число) нет двух, оканчивающихся на одну и ту же цифру (в десятичной записи). Какое наибольшее количество делителей может быть у монастырского числа?
Наибольшее количество делителей у монастырского числа может быть равно 4. Это происходит, например, для числа 30, которое имеет делители 1, 2, 3, 5, 6, 10, 15 и 30. Никакие два из этих чисел не оканчиваются на одну и ту же цифру.
Наибольшее количество делителей у монастырского числа может быть равно 4. Это происходит, например, для числа 30, которое имеет делители 1, 2, 3, 5, 6, 10, 15 и 30. Никакие два из этих чисел не оканчиваются на одну и ту же цифру.