Дана функция f(x)=x^2-6x+4. Найдите координаты точки, в которой угловой коэффицент касательной к графику функции равен 2. Решите прошу, готовлюсь к егэ, в своём ответе сомневаюсь

26 Июн 2019 в 19:43
159 +1
0
Ответы
1

Для того чтобы найти координаты точки, в которой угловой коэффициент касательной к графику функции равен 2, нам необходимо вычислить производную данной функции f(x) и приравнять ее к значению 2.

f(x) = x^2 - 6x + 4
f'(x) = 2x - 6

Теперь приравняем производную к 2 и найдем x:

2x - 6 = 2
2x = 8
x = 4

Теперь найдем y-координату, подставив найденное значение x обратно в исходную функцию:

f(4) = 4^2 - 6*4 + 4
f(4) = 16 - 24 + 4
f(4) = -4

Итак, координаты точки, в которой угловой коэффициент касательной равен 2, это (4, -4).

21 Апр 2024 в 00:40
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир