2 Мар 2019 в 19:41
240 +1
1
Ответы
1

To solve this equation, we can use the cosine angle sum and difference identities:

cos(A + B) = cos(A)cos(B) - sin(A)sin(B)
cos(A - B) = cos(A)cos(B) + sin(A)sin(B)

Given that cos(70°+x)*cos(x-10°) = 1/2, we can rewrite the equation using the cosine angle sum and difference identities:

cos(70°)cos(x)cos(10°)sin(x) = 1/2

Since cos(70°) = cos(360° - 70°) = -cos(70°), and cos(10°) = cos(360° - 10°) = cos(10°), we can simplify the equation further:

-cos(70°)cos(x)cos(10°)sin(x) = 1/2

Applying the cosine angle identities, we get:

-[(cos(70°)cos(10°)sin(x))² - (cos(x)sin(70°)sin(10°))²] = 1/2

Solving for x requires trigonometric calculations that are beyond the capabilities of this text-based interface. I recommend using a graphing calculator or software to find the value of x that satisfies the equation.

18 Сен 2024 в 13:01
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир