20 Июл 2019 в 19:47
202 +1
0
Ответы
1

To solve the given equations:

cos(π√(x+1)) = -1cos(π√(x-4)) = -1

We know that the cosine function has a maximum value of 1 and a minimum value of -1. Since both equations are equal to -1, we can infer that the arguments of the cosine function are such that they correspond to the maximum value of the function.

For cos(π√(x+1)) = -1, the argument π√(x+1) must correspond to the value of π, because cos(π) = -1.

Hence, we can write:

π√(x+1) = π

Solving for x:
√(x+1) = 1
x + 1 = 1
x = 0

So, the solution to the first equation is x = 0.

Now, for cos(π√(x-4)) = -1, the argument π√(x-4) must again correspond to π, because cos(π) = -1.

Hence, we can write:

π√(x-4) = π

Solving for x:
√(x-4) = 1
x - 4 = 1
x = 5

Therefore, the solution to the second equation is x = 5.

In conclusion, the solutions to the given equations are x = 0 and x = 5.

20 Апр 2024 в 23:14
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир