20 Авг 2019 в 08:35
193 +1
0
Ответы
1

To solve each absolute value equation:

/2x-3/ = 4

To solve this equation, we need to consider both the positive and negative solutions for the absolute value expression.

If 2x - 3 is positive:
2x - 3 = 4
2x = 7
x = 7/2

If 2x - 3 is negative:

(2x - 3) = 4
-2x + 3 = 4
-2x = 1
x = -1/2

Therefore, the solutions to the equation are x = 7/2 and x = -1/2.

/2x + 30/ = 48

If 2x + 30 is positive:
2x + 30 = 48
2x = 18
x = 9

If 2x + 30 is negative:

(2x + 30) = 48
-2x - 30 = 48
-2x = 78
x = -39

Therefore, the solutions to the equation are x = 9 and x = -39.

/5x + 6/ = 7

If 5x + 6 is positive:
5x + 6 = 7
5x = 1
x = 1/5

If 5x + 6 is negative:

(5x + 6) = 7
-5x - 6 = 7
-5x = 13
x = -13/5

Therefore, the solutions to the equation are x = 1/5 and x = -13/5.

/9 - 3x/ = 6

If 9 - 3x is positive:
9 - 3x = 6
-3x = -3
x = 1

If 9 - 3x is negative:

(9 - 3x) = 6
3x - 9 = 6
3x = 15
x = 5

Therefore, the solutions to the equation are x = 1 and x = 5.

20 Апр 2024 в 13:39
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир