1. Отметьте на координатной плоскости вершины А(–4; 2), В(1; 7) и С(6; 2) квадрата АВСD. Найдите координаты вершины D. 2. Решите уравнение:а) 3х + 2 · (2х – 3) = 8 – 7 · (х – 2);б) 2 · (2/5z + 1) + 3 1/3 = 4 – 1/2 · (4/5z – 1).3. Найдите площадь круга, у которого диаметр равен 8 см. Найдите площадь круга, у которого диаметр в 2 раза меньше диаметра первого круга.

1 Апр 2019 в 19:44
261 +1
0
Ответы
1
Вершина D квадрата ABCD будет симметрична вершине A относительно середины стороны BC. Таким образом, координаты вершины D будут (1+6)/2 = 3, (7+2)/2 = 4).

a) 3x + 2(2x – 3) = 8 – 7(x – 2)
Упрощаем: 3x + 4x - 6 = 8 - 7x + 14
7x - 6 = 22 - 7x
14x = 28
x = 2

б) 2(2/5z + 1) + 3 1/3 = 4 – 1/2(4/5z – 1)
Упрощаем: (4/5z + 2) + 10/3 = 4 - 2/5z + 1/2
4/5z + 10/3 = 11/2 - 2/5z
20z + 50 = 165 - 6z
26z = 115
z = 115/26

Площадь круга равна πr^2, где r - радиус круга.
Диаметр равен 8 см, следовательно, радиус r = 8/2 = 4 см.
Площадь первого круга: π * 4^2 = 16π см^2

Диаметр во втором круге в 2 раза меньше диаметра первого круга, то есть 4 см. Радиус второго круга r = 4/2 = 2 см.
Площадь второго круга: π * 2^2 = 4π см^2

28 Мая 2024 в 19:49
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир