Let's simplify the given expression step by step:
cos7π/2+a7π/2 + a7π/2+a = cos3π/2+2π+a3π/2 + 2π + a3π/2+2π+a = cos3π/2+a3π/2 + a3π/2+a = -sinaaa
tanπ/2−aπ/2 - aπ/2−a = cotaaa usingthetrigonometricidentitytan(x)=1/cot(x)using the trigonometric identity tan(x) = 1/cot(x)usingthetrigonometricidentitytan(x)=1/cot(x)
sinπ/2−aπ/2 - aπ/2−a = cosaaa usingthetrigonometricidentitysin(x)=cos(π/2−x)using the trigonometric identity sin(x) = cos(π/2 - x)usingthetrigonometricidentitysin(x)=cos(π/2−x)
cot3π/2−a3π/2 - a3π/2−a = tanaaa
Now, substituting these simplifications back into the original expression, we get:
-sinaaa * cotaaa - cosaaa + tanaaa
= -sinaaa * cotaaa - cosaaa + sinaaa/cosaaa
= -cscaaa * cotaaa - cosaaa + cscaaa
Therefore, the simplified expression is: -cscaaa * cotaaa - cosaaa + cscaaa
Let's simplify the given expression step by step:
cos7π/2+a7π/2 + a7π/2+a = cos3π/2+2π+a3π/2 + 2π + a3π/2+2π+a = cos3π/2+a3π/2 + a3π/2+a = -sinaaa
tanπ/2−aπ/2 - aπ/2−a = cotaaa usingthetrigonometricidentitytan(x)=1/cot(x)using the trigonometric identity tan(x) = 1/cot(x)usingthetrigonometricidentitytan(x)=1/cot(x)
sinπ/2−aπ/2 - aπ/2−a = cosaaa usingthetrigonometricidentitysin(x)=cos(π/2−x)using the trigonometric identity sin(x) = cos(π/2 - x)usingthetrigonometricidentitysin(x)=cos(π/2−x)
cot3π/2−a3π/2 - a3π/2−a = tanaaa
Now, substituting these simplifications back into the original expression, we get:
-sinaaa * cotaaa - cosaaa + tanaaa
= -sinaaa * cotaaa - cosaaa + sinaaa/cosaaa
= -sinaaa * cotaaa - cosaaa + sinaaa/cosaaa
= -cscaaa * cotaaa - cosaaa + cscaaa
Therefore, the simplified expression is: -cscaaa * cotaaa - cosaaa + cscaaa