7 Сен 2019 в 19:43
198 +1
0
Ответы
1

To find the value of the expression sin(6π/5) * tan(7π/3), we first need to calculate the values of sin(6π/5) and tan(7π/3).

sin(6π/5):
Using the unit circle, we can see that 6π/5 is in the second quadrant, where sine is positive. Thus, sin(6π/5) = sin(π - π/5) = sin(π/5) = √(1 - cos^2(π/5)). We can then use the cosine half-angle identity to calculate cos(π/5) and determine the value of sin(6π/5).

tan(7π/3):
Using the unit circle, we can see that 7π/3 is in the third quadrant, where tangent is negative. To find the value of tan(7π/3), we should first calculate sin(7π/3) and cos(7π/3) and then divide sin(7π/3) by cos(7π/3) to get tan(7π/3).

Once we have the values of sin(6π/5) and tan(7π/3), we can multiply them together to get the final result.

20 Апр 2024 в 02:53
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир