To solve the equation [tex]\sqrt{3}\cos(x) + \sin(x) = 0[/tex], we can rewrite it as:
[tex]\sqrt{3}\cos(x) = -\sin(x)[/tex]
Now, we can square both sides to eliminate the square root:
tex^2 = (-\sin(x))^2[/tex]
[tex]3\cos^2(x) = \sin^2(x)[/tex]
Using the trigonometric identity [tex]\sin^2(x) + \cos^2(x) = 1[/tex], we have:
[tex]3\cos^2(x) + \cos^2(x) = 1[/tex]
[tex]4\cos^2(x) = 1[/tex]
[tex]\cos^2(x) = \frac{1}{4}[/tex]
[tex]\cos(x) = \pm \frac{1}{2}[/tex]
So, [tex]x = \frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, \frac{11\pi}{3}[/tex]
To solve the equation [tex]\sqrt{3}\cos(x) + \sin(x) = 0[/tex], we can rewrite it as:
[tex]\sqrt{3}\cos(x) = -\sin(x)[/tex]
Now, we can square both sides to eliminate the square root:
tex^2 = (-\sin(x))^2[/tex]
[tex]3\cos^2(x) = \sin^2(x)[/tex]
Using the trigonometric identity [tex]\sin^2(x) + \cos^2(x) = 1[/tex], we have:
[tex]3\cos^2(x) + \cos^2(x) = 1[/tex]
[tex]4\cos^2(x) = 1[/tex]
[tex]\cos^2(x) = \frac{1}{4}[/tex]
[tex]\cos(x) = \pm \frac{1}{2}[/tex]
So, [tex]x = \frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, \frac{11\pi}{3}[/tex]