1) 15x + 2x+3yx + 3yx+3y = 34x+y4x + y4x+y 15x + 2x + 6y = 12x + 3y17x + 6y = 12x + 3y17x - 12x = 3y - 6y5x = -3yx = -3y/5
2) 25x−y5x - y5x−y - 3y = 2 + 32x−y2x - y2x−y 10x - 2y - 3y = 2 + 6x - 3y10x - 5y = 2 + 6x - 3y10−3y/5-3y/5−3y/5 - 5y = 2 + 6−3y/5-3y/5−3y/5 - 3y-6y - 5y = 2 - 18y/5 - 3y-11y = 2 - 18y/5 - 3y-11y = 2 - 18y/5 - 15y/5-11y = 2 - 33y/5-55y = 10 - 33y-55y + 33y = 10-22y = 10y = -10/22y = -5/11
Now we can substitute y in the first equation to find x:x = -3−5/11-5/11−5/11/5x = 15/11x = 15/11
Therefore, the solution to the system of equations is:x = 15/11y = -5/11
1) 15x + 2x+3yx + 3yx+3y = 34x+y4x + y4x+y 15x + 2x + 6y = 12x + 3y
17x + 6y = 12x + 3y
17x - 12x = 3y - 6y
5x = -3y
x = -3y/5
2) 25x−y5x - y5x−y - 3y = 2 + 32x−y2x - y2x−y 10x - 2y - 3y = 2 + 6x - 3y
10x - 5y = 2 + 6x - 3y
10−3y/5-3y/5−3y/5 - 5y = 2 + 6−3y/5-3y/5−3y/5 - 3y
-6y - 5y = 2 - 18y/5 - 3y
-11y = 2 - 18y/5 - 3y
-11y = 2 - 18y/5 - 15y/5
-11y = 2 - 33y/5
-55y = 10 - 33y
-55y + 33y = 10
-22y = 10
y = -10/22
y = -5/11
Now we can substitute y in the first equation to find x:
x = -3−5/11-5/11−5/11/5
x = 15/11
x = 15/11
Therefore, the solution to the system of equations is:
x = 15/11
y = -5/11