10 Сен 2019 в 07:42
254 +2
1
Ответы
1

To solve the equation 2log3(x-5) - 2 = log3(3x-5), we can use the properties of logarithms to simplify the equation.

First, let's break down the equation step by step:

Use the power rule of logarithms:
loga(b) - loga(c) = loga(b/c)

2log3(x-5) - 2 = log3(3x-5) can be rewritten as:
log3((x-5)^2) - log3(3) = log3(3x-5)

Combine the logarithms using the subtraction rule:
log3((x-5)^2 / 3) = log3(3x-5)

Use the property that if loga(b) = loga(c), then b = c:
(x-5)^2 / 3 = 3x - 5

Expand the left side of the equation and simplify:
(x^2 - 10x + 25) / 3 = 3x - 5

Multiply both sides of the equation by 3 to get rid of the denominator:
x^2 - 10x + 25 = 9x - 15

Rearrange the equation to set it equal to zero:
x^2 - 19x + 40 = 0

Factor the quadratic equation:
(x - 5)(x - 8) = 0

Solve for x by setting each factor to zero:
x - 5 = 0, x - 8 = 0
x = 5, x = 8

Therefore, the solutions to the equation 2log3(x-5) - 2 = log3(3x-5) are x = 5 and x = 8.

20 Апр 2024 в 02:00
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир