11 Сен 2019 в 08:49
263 +1
1
Ответы
1

To solve this logarithmic equation, we can use the properties of logarithms to combine the two logarithms on the left side of the equation.

First, recall that log a + log b = log ab.

Using this property, we can rewrite the left side of the equation as a single logarithm:

log3(5−x)(−1−x)(5-x)(-1-x)(5x)(1x)

Next, simplify the expression within the logarithm:

5−x5-x5x−1−x-1-x1x = -5 + x + x - x^2 = -5 - x - x^2

Therefore, the left side of the equation simplifies to:

log3−5−x−x2-5 - x - x^25xx2

Now, set this equal to -3:

log3−5−x−x2-5 - x - x^25xx2 = -3

To solve for x, we need to exponentiate both sides with base 3:

3^log3−5−x−x2-5 - x - x^25xx2 = 3^−3-33

This simplifies to:

-5 - x - x^2 = 1/27

Rearranging the equation, we get a quadratic equation:

x^2 + x + 5 + 1/27 = 0

Solving this quadratic equation will give us the possible values of x. We could use the quadratic formula or factoring to find the solutions for x.

20 Апр 2024 в 01:44
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир