Expanding the given expression:
(x + √y)(x^2 - x√y + y)= x(x^2) - x(x√y) + x(y) + √y(x^2) - √y(x√y) + √y(y)= x^3 - x^2√y + xy + x^2√y - xy + y√y= x^3 + y√y
Therefore, the simplified expression is x^3 + y√y.
Expanding the given expression:
(x + √y)(x^2 - x√y + y)
= x(x^2) - x(x√y) + x(y) + √y(x^2) - √y(x√y) + √y(y)
= x^3 - x^2√y + xy + x^2√y - xy + y√y
= x^3 + y√y
Therefore, the simplified expression is x^3 + y√y.