Имеем:8x3+y38x^3 + y^38x3+y3/4x2−2xy+y24x^2 - 2xy + y^24x2−2xy+y2 + 8x3−y38x^3 - y^38x3−y3/4x2+2xy+y24x^2 + 2xy + y^24x2+2xy+y2
Получаем общий знаменатель:= (8x3+y3)(4x2+2xy+y2)+(8x3−y3)(4x2−2xy+y2)(8x^3 + y^3)(4x^2 + 2xy + y^2) + (8x^3 - y^3)(4x^2 - 2xy + y^2)(8x3+y3)(4x2+2xy+y2)+(8x3−y3)(4x2−2xy+y2) / (4x2−2xy+y2)(4x2+2xy+y2)(4x^2 - 2xy + y^2)(4x^2 + 2xy + y^2)(4x2−2xy+y2)(4x2+2xy+y2)
= 32x5+16x4y+8x3y2+8x3y2+4x2y3+2xy4−32x5+16x4y−8x3y2−8x3y2+4x2y3−2xy432x^5 + 16x^4y + 8x^3y^2 + 8x^3y^2 + 4x^2y^3 + 2xy^4 - 32x^5 + 16x^4y - 8x^3y^2 - 8x^3y^2 + 4x^2y^3 - 2xy^432x5+16x4y+8x3y2+8x3y2+4x2y3+2xy4−32x5+16x4y−8x3y2−8x3y2+4x2y3−2xy4 / (4x2−2xy+y2)(4x2+2xy+y2)(4x^2 - 2xy + y^2)(4x^2 + 2xy + y^2)(4x2−2xy+y2)(4x2+2xy+y2)
= 32x4y+8x3y2+4x2y3+2xy432x^4y + 8x^3y^2 + 4x^2y^3 + 2xy^432x4y+8x3y2+4x2y3+2xy4 / (4x2−2xy+y2)(4x2+2xy+y2)(4x^2 - 2xy + y^2)(4x^2 + 2xy + y^2)(4x2−2xy+y2)(4x2+2xy+y2)
= 4xy8x3+2xy+y28x^3 + 2xy + y^28x3+2xy+y2 / (4x2−2xy+y2)(4x2+2xy+y2)(4x^2 - 2xy + y^2)(4x^2 + 2xy + y^2)(4x2−2xy+y2)(4x2+2xy+y2)
= 4xy2x+y2x + y2x+y^2 / (4x2−2xy+y2)(4x2+2xy+y2)(4x^2 - 2xy + y^2)(4x^2 + 2xy + y^2)(4x2−2xy+y2)(4x2+2xy+y2)
Поэтому решение уравнения равно 4xy2x+y2x + y2x+y^2 / (4x2−2xy+y2)(4x2+2xy+y2)(4x^2 - 2xy + y^2)(4x^2 + 2xy + y^2)(4x2−2xy+y2)(4x2+2xy+y2).
Имеем:
8x3+y38x^3 + y^38x3+y3/4x2−2xy+y24x^2 - 2xy + y^24x2−2xy+y2 + 8x3−y38x^3 - y^38x3−y3/4x2+2xy+y24x^2 + 2xy + y^24x2+2xy+y2
Получаем общий знаменатель:
= (8x3+y3)(4x2+2xy+y2)+(8x3−y3)(4x2−2xy+y2)(8x^3 + y^3)(4x^2 + 2xy + y^2) + (8x^3 - y^3)(4x^2 - 2xy + y^2)(8x3+y3)(4x2+2xy+y2)+(8x3−y3)(4x2−2xy+y2) / (4x2−2xy+y2)(4x2+2xy+y2)(4x^2 - 2xy + y^2)(4x^2 + 2xy + y^2)(4x2−2xy+y2)(4x2+2xy+y2)
= 32x5+16x4y+8x3y2+8x3y2+4x2y3+2xy4−32x5+16x4y−8x3y2−8x3y2+4x2y3−2xy432x^5 + 16x^4y + 8x^3y^2 + 8x^3y^2 + 4x^2y^3 + 2xy^4 - 32x^5 + 16x^4y - 8x^3y^2 - 8x^3y^2 + 4x^2y^3 - 2xy^432x5+16x4y+8x3y2+8x3y2+4x2y3+2xy4−32x5+16x4y−8x3y2−8x3y2+4x2y3−2xy4 / (4x2−2xy+y2)(4x2+2xy+y2)(4x^2 - 2xy + y^2)(4x^2 + 2xy + y^2)(4x2−2xy+y2)(4x2+2xy+y2)
= 32x4y+8x3y2+4x2y3+2xy432x^4y + 8x^3y^2 + 4x^2y^3 + 2xy^432x4y+8x3y2+4x2y3+2xy4 / (4x2−2xy+y2)(4x2+2xy+y2)(4x^2 - 2xy + y^2)(4x^2 + 2xy + y^2)(4x2−2xy+y2)(4x2+2xy+y2)
= 4xy8x3+2xy+y28x^3 + 2xy + y^28x3+2xy+y2 / (4x2−2xy+y2)(4x2+2xy+y2)(4x^2 - 2xy + y^2)(4x^2 + 2xy + y^2)(4x2−2xy+y2)(4x2+2xy+y2)
= 4xy2x+y2x + y2x+y^2 / (4x2−2xy+y2)(4x2+2xy+y2)(4x^2 - 2xy + y^2)(4x^2 + 2xy + y^2)(4x2−2xy+y2)(4x2+2xy+y2)
Поэтому решение уравнения равно 4xy2x+y2x + y2x+y^2 / (4x2−2xy+y2)(4x2+2xy+y2)(4x^2 - 2xy + y^2)(4x^2 + 2xy + y^2)(4x2−2xy+y2)(4x2+2xy+y2).