To simplify the expression, we can first use the trigonometric identity cos(2θ) = 2cos^2(θ) - 1 to rewrite cos(2°) and simplify the expression:
cos(2°) = 2cos^2(1°) - 1cos(2°) = 2cos^2(1°) - 1cos(2°) = 2(0.99985)^2 - 1cos(2°) = 2(0.9997004225) - 1cos(2°) = 1.999400845 - 1cos(2°) = 0.999400845
Now, we can substitute this value into the expression:
cos(32°) cos(2°) + sin(32°) cos(2°)= cos(32°) 0.999400845 + sin(32°) 0.999400845= 0.848048096 0.999400845 + 0.529919264 0.999400845= 0.84731865 + 0.529239202= 1.376557852
Therefore, cos(32°)cos(2°) + sin(32°)cos(2°) simplifies to approximately 1.37656.
To simplify the expression, we can first use the trigonometric identity cos(2θ) = 2cos^2(θ) - 1 to rewrite cos(2°) and simplify the expression:
cos(2°) = 2cos^2(1°) - 1
cos(2°) = 2cos^2(1°) - 1
cos(2°) = 2(0.99985)^2 - 1
cos(2°) = 2(0.9997004225) - 1
cos(2°) = 1.999400845 - 1
cos(2°) = 0.999400845
Now, we can substitute this value into the expression:
cos(32°) cos(2°) + sin(32°) cos(2°)
= cos(32°) 0.999400845 + sin(32°) 0.999400845
= 0.848048096 0.999400845 + 0.529919264 0.999400845
= 0.84731865 + 0.529239202
= 1.376557852
Therefore, cos(32°)cos(2°) + sin(32°)cos(2°) simplifies to approximately 1.37656.