a) To solve the equation 2-cos2x2x2x + 3sinxxx = 0, we can use trigonometric identities to simplify it.
Using the double angle identity for cosine, cos2x2x2x = 1 - 2sin^2xxx, we can rewrite the equation as:
2 - 1−2sin2(x)1 - 2sin^2(x)1−2sin2(x) + 3sinxxx = 0
Simplifying further, we get:
2 - 1 + 2sin^2xxx + 3sinxxx = 01 + 2sin^2xxx + 3sinxxx = 02sin^2xxx + 3sinxxx + 1 = 0
Now, let's substitute sinxxx = t, where -1 ≤ t ≤ 1:
2t^2 + 3t + 1 = 0
This is a quadratic equation which can be factored as:
2t+12t + 12t+1t+1t + 1t+1 = 0
Setting each factor to 0 gives us:
2t + 1 = 0 => t = -1/2t + 1 = 0 => t = -1
Now, substitute back t = sinxxx:
sinxxx = -1/2 or sinxxx = -1
This gives us the solutions: x = π/6 + 2πn, x = 3π/2 + 2πn, for integer n.
b) To solve the equation 26sinxxxcosxxx - cos4x4x4x + 7 = 0, we can use trigonometric identities to simplify it.
Using the double angle identity for cosine, cos4x4x4x = 1 - 2sin^22x2x2x, we can rewrite the equation as:
26sinxxxcosxxx - 1−2sin2(2x)1 - 2sin^2(2x)1−2sin2(2x) + 7 = 0
26sinxxxcosxxx - 1 + 2sin^22x2x2x + 7 = 026sinxxxcosxxx + 2sin^22x2x2x + 6 = 0
Now, using the double angle identity for sin, sin2x2x2x = 2sinxxxcosxxx, we can rewrite the equation as:
13sin2x2x2x + 2sin^22x2x2x + 6 = 02sin^22x2x2x + 13sin2x2x2x + 6 = 0
Now, let's substitute sin2x2x2x = t, where -1 ≤ t ≤ 1:
2t^2 + 13t + 6 = 0
2t+12t + 12t+1t+6t + 6t+6 = 0
2t + 1 = 0 => t = -1/2t + 6 = 0 => t = -6
Now, substitute back t = sin2x2x2x:
sin2x2x2x = -1/2 or sin2x2x2x = -6
This gives us the solutions: x = π/6 + 2πn, x = 7π/6 + 2πn, for integer n.
a) To solve the equation 2-cos2x2x2x + 3sinxxx = 0, we can use trigonometric identities to simplify it.
Using the double angle identity for cosine, cos2x2x2x = 1 - 2sin^2xxx, we can rewrite the equation as:
2 - 1−2sin2(x)1 - 2sin^2(x)1−2sin2(x) + 3sinxxx = 0
Simplifying further, we get:
2 - 1 + 2sin^2xxx + 3sinxxx = 0
1 + 2sin^2xxx + 3sinxxx = 0
2sin^2xxx + 3sinxxx + 1 = 0
Now, let's substitute sinxxx = t, where -1 ≤ t ≤ 1:
2t^2 + 3t + 1 = 0
This is a quadratic equation which can be factored as:
2t+12t + 12t+1t+1t + 1t+1 = 0
Setting each factor to 0 gives us:
2t + 1 = 0 => t = -1/2
t + 1 = 0 => t = -1
Now, substitute back t = sinxxx:
sinxxx = -1/2 or sinxxx = -1
This gives us the solutions: x = π/6 + 2πn, x = 3π/2 + 2πn, for integer n.
b) To solve the equation 26sinxxxcosxxx - cos4x4x4x + 7 = 0, we can use trigonometric identities to simplify it.
Using the double angle identity for cosine, cos4x4x4x = 1 - 2sin^22x2x2x, we can rewrite the equation as:
26sinxxxcosxxx - 1−2sin2(2x)1 - 2sin^2(2x)1−2sin2(2x) + 7 = 0
Simplifying further, we get:
26sinxxxcosxxx - 1 + 2sin^22x2x2x + 7 = 0
26sinxxxcosxxx + 2sin^22x2x2x + 6 = 0
Now, using the double angle identity for sin, sin2x2x2x = 2sinxxxcosxxx, we can rewrite the equation as:
13sin2x2x2x + 2sin^22x2x2x + 6 = 0
2sin^22x2x2x + 13sin2x2x2x + 6 = 0
Now, let's substitute sin2x2x2x = t, where -1 ≤ t ≤ 1:
2t^2 + 13t + 6 = 0
This is a quadratic equation which can be factored as:
2t+12t + 12t+1t+6t + 6t+6 = 0
Setting each factor to 0 gives us:
2t + 1 = 0 => t = -1/2
t + 6 = 0 => t = -6
Now, substitute back t = sin2x2x2x:
sin2x2x2x = -1/2 or sin2x2x2x = -6
This gives us the solutions: x = π/6 + 2πn, x = 7π/6 + 2πn, for integer n.